J.L. Hench et al. / Continental Shelf Research 22 (2002) 26152631
2629
systems are related by the chain rule
coordinate system by
q qs
q qn
q
qx
qs qx qn qx
Msi Mxi cos a Myi sin a;
A:3
q
q
sin a ;
A:11
cos a
qs
qn
Mni Myi cos a Mxi sin a;
A:4
q qs
q qn
q
where the index i 1 : 5 as in Eqs. (A.1) and (A.2)
qy
qs qy qn qy
above. The along- and across-stream velocities can
q
q
be related to the x2y velocity components using
sin a cos a ;
A:12
qs
qn
the same orthogonal rotation
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
where qs=qx cos a; qs=qy sin a; qn=qx
Us U cos a V sin a U 2 V 2;
A:5
sin a; and qn=qy cos a from Fig. 8. The final
relationship needed for the rotation is
Un V cos a U sin a 0:
A:6
qa
1
;
A:13
qs Rs
From Eq. (A.6), a arctanV =U : Eqs. (A.5) and
(A.6) can also be rearranged to express U ; V in
where Rsx; y; t is the streamwise radius of
terms of Us and a
curvature (cf. Kalkwijk and de Vriend, 1980; Gill,
1982), with curvature to the left assumed positive.
U Us cos a;
A:7
Expanding the spatial derivatives in Eqs. (A.9) and
(A.10) with the chain rule, substituting in the
V Us sin a:
A:8
simplifying yields the momentum equations in
Substituting the x2y momentum terms from
Eqs. (A.1) and (A.2) into Eqs. (A.3) and (A.4),
qZ Cf Us2
qUs
qUs
and replacing U and V using Eqs. (A.7) and (A.8)
Us
g
0;
A:14
s
qz} |fflfflfflfflffl{zfflqffls} |fflffl{zq} |fflfflffl{Hfflffl }
t
gives
zffl
fflffl
|{
fflffl ffl
Ms5
Ms1
Ms2
Ms4
qUs
qUs
qUs
sin a
Us cos a
|{ |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflqfflyfflfflffl}
t
qx
qz}
qa Us2
qZ
ffl fflffl
fUs g
0:
A:15
Us
q} Rs |ffl{zffl} |fflffl{zqffln
Ms1
t
Ms2
|ffl {zffl |ffl{zffl} M
ffl}
Cf Us2
n3
qZ
qZ
Mn1
Mn4
Mn2
g cos a sin a
0;
A:9
qx
qy |fflfflffl {Hfflffl }
zffl
Following the above derivation, the mapping
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ms5
between the x2y and s2n momentum equations is
Ms4
qa
qa
qa
qUs
qU
qV
Us Us2 cos a sin a
cos a
A:16
sin a:
|ffl{zfflt |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflqxfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflqfflyfflffl}
q}
qt
qt
qt
{z
ffl fflffl
Mn1
Mn2
qZ
qZ
qV
qU
qa
fUs g cos a sin a
0:
A:10
|ffl{zffl}
Us
cos a
A:17
sin a:
qy
qx
Mn3 |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
qt
qt
qt
Mn4
With this transformation Ms3 and Mn5 are zero by
qUs
qU
qU
V
U
Us
cos a
definition (i.e. bottom friction acts entirely in the
qx
qy
qs
streamwise direction, and Coriolis only in the
qV
qV
normal direction). To complete the transforma-
V
A:18
U
sin a:
qx
qy
tion, derivatives in the x2y and s2n coordinate